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Abstract

The purpose of the study is to determine an easy-to-use criterion to evaluate the risk of vibration-induced fatigue of

small bore pipes. The failure mechanism considered is the resonant amplification of a stationary broadband excitation

by the main pipe, leading to bending stresses above the fatigue limit of the steel. Based on the Euler beam theory, a

simple model is built up for the natural mode shapes of the small bore pipe close to its root. It is shown that the velocity

spectrum at the root of the small bore pipe is equal to the r.m.s. value of the bending stress multiplied by a function of

the natural frequency, the damping coefficient, the speed of elastic waves in the steel, Young’s modulus and a

nondimensional factor weakly depending on the geometry of the small bore pipe. A maximum velocity spectrum can

then be deduced, assuming that a small bore pipe vibrates mainly on its natural mode shapes. The maximum excitation

spectrum is defined for each frequency f as the one which would generate a maximum bending stress equal to the

endurance limit of the steel, would the small bore pipe have a natural frequency equal to f :Using envelope values of the
nondimensional factor, the stress intensification factor, the peak factor and the endurance limit of the steel, one obtains

the following maximum velocity spectrum for the stainless steel: vo6mm/s/
ffiffiffi
f

p
; and the following maximum velocity

spectrum for the ferritic steel: vo2.7mm/s/
ffiffiffi
f

p
: The velocity spectrum criterion appears less penalizing than the 12mm/s

criterion and more conservative than the strict enforcement of the ANSI-OM3 standard. Comparisons with former

plant studies show that the velocity spectrum criterion leads to the correct fatigue diagnosis.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Several failures of small bore piping systems have occurred in French nuclear power plants because of fatigue due to

flow-induced vibrations, as described by Moussou and Boyelle (1999) (Moussou et al., 2001). Evaluation of the risk of

fatigue failure is thus required for small bore pipes in steady operating conditions.

Expert methods for the vibration of small bore pipes such as modal analysis and operating deflection shapes analysis

are well established, as indicated by Richardon (1997). The control of small bore pipes continues to be an issue because

of their large number in safety related systems. Time-consuming methods requiring expertise cannot be used, and simple

criteria are needed to optimize control operations.

In structural mechanics terms, the difference between main pipes and small bore pipe vibration is that the excitation

sources of small bore pipes are forced displacements, with a rather complicated spectrum such as the one shown in

Fig. 1. As can be seen, the excitation spectrum of a small bore pipe can exhibit a significant level up to 400Hz, with

several modes.

The regulation for vibration of piping systems is given by ANSI-OM3 (1982). This is based on the theory of vibrating

beams, and stipulates that if the r.m.s. velocity everywhere on a pipe is lower than a prescribed value, dependent on the
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pipe parameters, there is no risk of fatigue failure (Wachel, 1995). In a similar approach, a widespread rule of thumb

stipulates that a pipe which vibrates below 12mm/s is not vulnerable to vibration-induced fatigue.

The ANSI-OM 3 standard does not give guidance for determining the location of the maximum velocity on

complicated small bore pipes, such as the one reproduced in Fig. 2. The on-site technician has to decide where the small

bore pipe has a velocity maximum. This operation can be time-consuming: for instance, the small bore pipe reproduced

in Fig. 2 would require at least six to seven points of measurement in three perpendicular directions in order to

determine the location where the velocity is maximum. In the case of a nuclear power plant, such an operation may be

difficult to achieve whenever a highly radioactive environment surrounds the small bore pipe.

Furthermore, an r.m.s. velocity measurement on a small bore pipe, although providing a reasonably fair estimation

of the stress, cannot provide information about the spectral content of the vibration. A broadband vibration of the

main pipe due to valve cavitation could generate a small bore pipe vibration mode similar to that due to the blade

passing frequency of a pump. Yet, in the first case, the small bore pipe would be exposed to vibration-induced fatigue

whatever its natural frequencies, while in the second case, the addition of a small mass would be enough to decrease its

vibration by a factor of 10.
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Nomenclature

C1 nondimensional coefficient of the ANSI-OM3, describing the influence of concentrated masses and varying

from 0.25 to 1

C3 nondimensional coefficient of the ANSI-OM3, describing the added mass factor (water), varying from 1 to

about 1.3 for small bore pipes

C4 nondimensional coefficient of the ANSI-OM3, describing the velocity to stress ratio as a function of the

layout and varying from 0.7 to 1.33

csteel speed of the compression waves in steel, equal to ðE=rsteelÞ
1=2: 5000m/s for current steel.

E Young modulus of the steel (MPa)

f frequency (Hz)

fn natural frequency of the small bore pipe (Hz)

F shear force spectrum in the small bore pipe ðN=
ffiffiffiffiffiffiffi
Hz

p
Þ

Fpeak peak factor: ratio of the maximum value to the r.m.s. value of the stress, equal to 3.5

GðuÞ nondimensional elastic energy in the root of the small bore pipe, equal to:

GðuÞ ¼ u þ 1
2
cos 2u � 2e�u sin u � 1

2
e�2u

i stress intensification factor, equal to 2.1 for a socket welding and 1.8 for a butt welding

I main pipe inertia, equal to ðp=4ÞðR4
out � R4

inÞ ðm
4Þ

K coefficient equal to E=acsteel (MPa s/m)

k bending wavenumber ðm�1Þ; defined by: EIk4 ¼ lo2

L straight length of the small bore pipe (m)

lv length of the valve (m)

M bending moment spectrum in the small bore pipe ðN=m
ffiffiffiffiffiffiffiffi
HzÞ

p
Rout outer radius of the small bore pipe (m)

Rin inner radius of the small bore pipe (m)

u nondimensional space coordinate, defined as u ¼ kx

Vall allowable r.m.s. velocity according to the ANSI-OM3 standard

vmax maximum velocity spectrum in the small bore pipe ðm=s
ffiffiffiffiffiffiffi
Hz

p
Þ

vroot velocity spectrum at the root of the small bore pipe ðm=s
ffiffiffiffiffiffiffi
Hz

p
Þ

x abscissa along the small bore pipe (m)

y bending deflection spectrum along the small bore pipe ðm=
ffiffiffiffiffiffiffi
Hz

p
Þ

a nondimensional factor, varying from 0.2 to 0.3 for usual pipes, defined as: a ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsteelI=ðl R2

outÞ
p

Z structural damping of the small bore pipe

l mass per unit length of the small bore pipe, equal to: prsteelðR
2
out � R2

inÞ þ prwaterR
2
in ðkg=mÞ

rsteel steel density, equal to 7800 kg/m3

rwater water density, equal to 1000 kg/m3

slim fatigue limit of the steel (at 1011 cycles), equal to 52MPa for ferritic steel and 114MPa for austenitic steel

s0 beam bending stress spectrum at the root of the small bore pipe ðMPa=
ffiffiffiffiffiffiffi
Hz

p
Þ

o pulsation (rad/s), equal to 2pf
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Finally, a velocity of 5mm/s measured on a small bore pipe could hide a risk of coincidence with a main pipe natural

frequency: a small change in the operating conditions could be enough to generate a high vibration level in the small

bore pipe.

In summary, three reasons for developing a criterion based on the spectrum of the excitation can be given; the first

reason is that a single measurement at a predefined position is easy to specify and obtain. The second reason is that the

velocity spectrum at the root of the small bore pipe can be related to operating conditions, whereas the maximum r.m.s.

velocity of the small bore pipe can hardly be interpreted. The third reason is that r.m.s. measurement according to the

ANSI-OM 3 standard may hide the risk of a coincidence between a main pipe mode and a small bore pipe mode.

2. Scope of the criterion

The criterion presented hereafter deals with the fatigue risk evaluation of a small bore pipe in a given set of operating

conditions. The input data of this evaluation are the velocity measurements in the operating conditions which are

assumed to be the most damaging for the small bore pipe; how to determine these damaging conditions is beyond the

scope of the present paper.

The proposed criterion is to be used as a screening one: if a small bore pipe excitation remains below the threshold

spectrum, there is no risk of fatigue failure. If the excitation exceeds the threshold, there might be a risk, and further

evaluation is required to determine whether corrective actions should be undertaken.

The failure mechanism considered is the resonant amplification of the main pipe vibrations. No other source of

excitation is considered.

The vibrations of the main pipe are assumed to be a stationary broadband process. The vibrations due to a pure

harmonic excitation are not investigated; other techniques have been proposed by Von Nimitz (1974) in this case.

Neither transient processes nor static deformations are investigated.
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Fig. 2. Complicated small bore pipe layout in a safety piping system.
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Fig. 1. Typical velocity spectrum (square root of the PSD) at the root of a small bore pipe.
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3. Calculations

When submitted to stationary flow-induced vibrations, a small bore pipe vibrates mainly on its natural modes. The

vibration level can be harmless, provided that the excitation, i.e., the main pipe displacement, remains low enough. The

issue is thus to determine the maximum velocity spectrum that a small bore pipe can tolerate at its root, in the range of

frequencies close to its natural frequency.

The calculation steps are the following:

(i) determination of the mode shape of the small bore pipe,

(ii) determination of the deflection amplitude as a function of the excitation spectrum, based on the fact that the

dissipation due to the damping balances the power provided by the main pipe movements,

(iii) determination of the r.m.s. stress as a function of the excitation spectrum,

(iv) elaboration of a criterion using the expression of the r.m.s. stress, the peak factor and the stress intensification

factor.

3.1. Hypotheses and assumptions

The small bore pipe is modelled as shown in Fig. 3. It is assumed that the small bore pipe excitation is a lateral

displacement imposed at its root, and that the main part of the elastic energy of the small bore pipe is localized within a

straight part of length L starting from its root. Furthermore, it is assumed that the deflection shape of the small bore

pipe is similar to a mode shape, and that the main pipe compliance is equal to zero, so that the angle of deflection of the

small bore pipe is zero at its root. The Tresca stress is therefore assumed maximal at the root of the small bore pipe, and

equal to the bending stress, i.e., the contribution of torsion to the total stress is assumed negligible.

The spectra used in the present paper are defined as the square roots of the PSD, with a scale factor making the area

of the PSD equal to the mean square value of the time history. Square roots are used instead of PSD because harmonic

calculation becomes easier: for instance, the stress spectrum is equal to the excitation spectrum multiplied by the

transfer function.

The velocity spectrum and the bending moment are basically complex spectra. As all physical values are to be

expressed as functions of s0; this latter spectrum is chosen real, and all other spectra have their phase referenced to it.

For the sake of simplicity, the modulus symbol is omitted in the following sections when no confusion can occur.

3.2. Mode shape of the small bore pipe

As indicated, the deflection shape of the straight part of the small bore pipe is assumed to be almost identical to a

mode shape, i.e., a shape with a clamp condition on the left side. The main pipe movement is neglected in this part of the

study.

It is shown in Appendix A that for a given frequency, the mode shape of the straight pipe complying with a clamp

condition on the left is

vðxÞ
csteel

¼ a
s0
E

½expð�kxÞ � cosðkxÞ þ sinðkxÞ� ð1Þ
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Fig. 3. Small bore pipe schematic drawing.
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and the bending moment is expressed as

MðxÞ ¼
Is0
2Rout

½expð�kxÞ þ cosðkxÞ � sinðkxÞ�; ð2Þ

where csteel is the speed of sound in the steel, a is a nondimensional parameter, varying from 0.2 to 0.3, s0 is the bending
stress spectrum at the root of the small bore pipe and k is related to the pulsation o by the dispersion equation

k2 ¼
o

2acsteelRout
:

The deflection shape and the bending moment of the straight part of the small bore pipe are shown in Fig. 4.

Expressions (1) and (2) are assumed to be valid for a wide range of boundary conditions, as shown in Figs. 5–7.

In the case of an elbow, i.e., a very flexible element, a zero moment condition can be assumed, so that kLC1

(see Fig. 5). In the case of a valve with a smaller length lv than the tube’s one, the bending moment at the root of the

small bore pipe is only due to the valve acceleration, and kðL þ lvÞC1 (see Fig. 6). In the case of a support, a clamp or a
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Fig. 4. Small bore pipe deflection and moment.
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Fig. 5. Mode shape for an elbow on the right side.
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Fig. 6. Mode shape for a valve on the right side.
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pin condition is generated, and kL is equal to 4 (see Fig. 7). In all the aforementioned situations the kL term is higher

than 0.5. This relation holds for the first natural mode, and kL is of course higher for higher modes.

3.3. Energy balance of the deflection shape

The structural damping of the small bore pipe is assumed small (typically lower than 1%) so that the velocity at the

root is much smaller than the velocity at distance L: The shear force spectrum at the root is thus almost equal to its

modal value

F0 ¼
s0Ik

Rout
:

The rate of energy flow to the small bore pipe Pin is equal to the shear force F0 multiplied by the velocity vroot at the

base. Using complex notations, for a given wavenumber k and for a given frequency f ; the rate of energy flow is

Pin ¼
1

2
ReðF�

0 vrootÞ ¼
s0Ik

2Rout
jvrootj:

The rate of dissipation Pdis due to damping can be estimated using a mass-spring analogy as in Gibert (1988). It is

shown that the dissipation of energy during one cycle is related to the total energy Ut and the structural damping

coefficient Z by

energy dissipated ¼ 4pZ total energy:

The rate of dissipation Pdis is equal to the energy dissipated during one cycle divided by the duration of the cycle

Pdis ¼ 4pZfUt:

An estimation of the total energy of the small bore pipe is now needed. It is well known that the total energy is equal

to the double of the elastic energy [see Landau and Lifchitz (1974) for instance] for the natural modes of a linear

oscillator. Assuming that all the elastic energy of the small pipe is due to the bending of the straight pipe of length L;
one gets

Ut ¼
Z L

0

M2

EI
dx ¼

1

k

Z 1

0

M2

EI
dðkxÞ ¼

1

k

1

EI

s0I
2Rout

� �2

GðkLÞ;

where GðkLÞ ¼
R kL

0 ½expð�uÞ þ cosðuÞ � sinðuÞ�2 du can be solved analytically (see Nomenclature for its expression). As

can be seen in Fig. 8, G varies from 1.35 to 4 for kL varying from 0.5 to 4. The dissipated power can then be expressed

as

Pdis ¼
4pZf

k

1

EI

s0I
2Rout

� �2

GðkLÞ:

In steady regime, the rate of energy flow balances the dissipation. By equating Pin to Pdis and dropping the modulus

symbol, one gets

Zo
k2

s0
ERout

GðkLÞ ¼ vroot:
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Fig. 7. Mode shape for a support on the right side.

P. Moussou / Journal of Fluids and Structures 18 (2003) 149–163154



The term o=k2 is removed using the dispersion relation

2aGðkLÞ
s0
E

¼
vroot

Zcsteel
: ð3Þ

The above equation contains the fatigue criterion in a nutshell: the relation between the bending stress and the forced

velocity only depends on the damping, on two factors a and G which are roughly constant and on physical constants.

Velocity appears as a natural estimator of the bending stress; this feature is the base of velocity-based criterion for the

control of piping system vibrations proposed by Wachel (1995) and Karczub and Norton (1999).

3.4. R.m.s. stress due to a broadband excitation

Eq. (2) links the root velocity spectrum to the root bending stress spectrum. In order to get an estimation of the

physical stress, i.e., a stress expressed in MPa, an integration of the bending stress spectrum in the frequency range close

to the natural frequency fn of the small bore pipe has to be performed. Let the excitation spectrum vrootðf Þ be roughly
constant for the frequencies close to the natural frequencies. Using again a mass–spring analogy, it is easily shown that

for a frequency close to a natural frequency fn; the stress spectra is expressed as a function of the velocity spectra:

s0ðf Þ ¼
KvrootðfnÞ

ð1� ðf 2=f 2n ÞÞ þ 2jZ
;

K being a constant, which can be determined using the Eq. (2) for f ¼ fn and j ¼
ffiffiffiffiffiffiffi
�1

p
: Then,

s0ðf Þ ¼
E

aGðkLÞcsteel

vrootðfnÞ
ð1� ðf 2=f 2n ÞÞ þ 2jZ

For small values of the damping coefficient, most of the r.m.s. stress is due to the frequencies close to fn: Integrating
the square modulus of the above expression, one gets

sr:m:s:
0 E

EvrootðfnÞ
aGðkLÞcsteel

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
df

ð1� ðf 2=f 2n ÞÞ
2 þ 4Z2

s
:

A fair approximation of the above integral is pfn=4Z; so that

sr:m:s:
0 E

EvrootðfnÞ
aGðkLÞcsteel

ffiffiffi
p
Z

r ffiffiffiffi
fn

p
2

:

The r.m.s. stress is related to the root velocity spectrum by a factor depending upon the damping coefficient, upon the

factors G and a which are roughly constant and upon the square root of the frequency. This last dependency appears

self-evident according to dimensional considerations.
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3.5. Fatigue criterion expression

The expected lifetime of a power plant being of several tens of years, and the natural frequencies of small bore pipes

ranging from 10 to 200Hz, the evaluation of the failure risk should be based on high-cycle fatigue. Following the same

approach as in the ANSI-OM3 standard, the fatigue criterion for the r.m.s. beam stress at the root of the small bore

pipe is defined by

sr:m:s:
0 p

slim
iFpeak

;

i being the stress intensification factor (2.1 for a socket welding and 1.8 for a butt welding), Fpeak being the ratio of the

temporal maximal stress to the r.m.s. stress, conventionally taken equal to 3.5 (see Ibrahim, 1985; Sobczyk and Spencer,

1992), slim being the fatigue limit of steel: the B-curve of the ASME tables indicates 114MPa for stainless steel and

52MPa for austenitic steel for 1011 cycles.

The fatigue criterion is therefore easily expressed for the root velocity as

vrootðfnÞp
1ffiffiffiffi
fn

p 2a
ffiffiffi
Z

p
GðkLÞffiffiffi
p

p csteel

E

slim
iFpeak

: ð4Þ

Let a general fatigue criterion be now defined, based on the above expression. The threshold spectrum should exhibit

the following property: if the velocity spectrum at the root of the small bore pipe is lower than the threshold, there is no

risk of vibration-induced fatigue failure. According to the preceding concepts, fatigue can occur if the velocity spectrum

exceeds expression (4) at a natural frequency of the small bore pipe. In a penalizing approach, the worst situation would

occur when two natural frequencies are simultaneously involved. A screening criterion can thus be proposed by dividing

expression (4) by a factor
ffiffiffi
2

p
so that the quadratic summation of the stresses associated with the two natural

frequencies does not exceed the fatigue limit of the steel.

A further step is needed to define a layout-independent criterion. This is achieved by demanding the root velocity to

be lower than expression (4) divided by the factor
ffiffiffi
2

p
for any value of the frequency fn: Hence, whatever its natural

frequencies, a small bore pipe is not exposed to fatigue failure if the root velocity spectrum fulfills the following

condition:

vrootðf Þp
1ffiffiffi
f

p 2a
ffiffiffi
Z

p
GðkLÞffiffiffi
p

p csteel

E

slim
iFpeak

: ð5Þ

Eq. (5) is a screening fatigue criterion for small bore pipes, expressed using root velocity spectrum measurements.

Suggested values of the coefficients are given in Table 1 for socket-welding small bore pipes. Using these values, the

criterion for stainless steel can be written as

vrootðf Þp
6 mm=sffiffiffi

f
p

and for the ferritic steel as

vrootðf Þp
2:7 mm=sffiffiffi

f
p :
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Table 1

Proposed coefficients of the criterion

Parameters Ferritic steel Stainless steel Units

Z 5	 10�3 5	 10�3

csteel 5000 5000 m/s

E 2	 105 2	 105 MPa

a 0.2 0.2

GðkLÞ 1.35 1.35

slim 52 114 MPa

i 2.1 2.1

Fpeak 3.5 3.5

vrootðf Þ
ffiffiffi
f

p
2.7 5.9 mm/s
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4. How to use the velocity spectrum criterion

The purpose of the velocity spectrum criterion is to easily identify small bore pipes which are not exposed to

vibration-induced fatigue.

It should be used the following way: if the root velocity spectrum is lower than the criterion, the small bore pipe is

safe. If the root velocity spectrum crosses the threshold, the small bore pipe might be exposed to vibration-induced

fatigue and further investigation is required. In this case, the risk depends on the frequency for which the excitation

crosses the threshold: the closer to a natural frequency, the higher the risk.

It must be highlighted that the criterion should be used for broadband vibrations, i.e., for peaks broader than a

typical small bore pipe resonance. The criterion cannot be used for narrow excitations such as an excitation due to a

pump passing blade frequency. It is the author’s belief that a criterion for narrow excitations would be useless, because

the current peaks would generally be too high. Coincidence between the natural frequencies of the small bore pipes and

the pump passing blade frequency and its harmonics should be avoided.

5. Comparison with a maximum deflection approach

In the present section, the velocity spectrum criterion is compared to deflection-based criteria. The reference values of

the stress and the deflection are assumed to be correctly given by Eqs. (1) and (3).

5.1. ANSI-OM3 applied to small bore pipes

An analysis of the ANSI-OM3 criteria was given by Baratte et al. (1998). Applied to small bore pipes, the ANSI-

OM3 allowable r.m.s. velocity can be rewritten using the present paper’s notations:

Vall ¼ slim
C1C4

FpeakC3

13:4 mm=ðsMPaÞ
i

;

where C1 varies from 0.25 to 1 and stands for the influence of the concentrated masses, C3 varies from 1 to 1.3 and

stands for the added mass due to water, C4 varies from 0.7 to 1.33 and is a layout-dependent velocity to stress ratio.

5.2. Case of a straight pipe with a small heavy valve

Let a straight pipe with a valve at its end vibrate on its first natural mode. The valve is small compared to the length

of the tube, the diameter of the tube is 1 in (2.54mm) and the structural damping coefficient is equal to 1%; a is equal to
2.8, the natural frequency fn is associated to kL ¼ 1 (see Fig. 6 for lv5L) so that GðkLÞ ¼ 1:5 (see Fig. 8), and the

maximum bending stress is equal to the fatigue limit if (Eq. (3))

vrootðfnÞ
ffiffiffiffi
fn

p
¼
2	 0:28	

ffiffiffiffiffiffiffiffiffi
0:01

p
	 1:35ffiffiffi

p
p 5000

2	 1011
114

2:1	 3:5
¼ 16:5 mm=s:

There is a margin factor of 2.8 between the actual fatigue threshold and the 6mm/s/
ffiffiffi
f

p
criterion.

The application of the ANSI-OM3 criterion provides the following value of the maximum velocity:

Vall ¼ 114
0:25	 0:7

3:5	 1:2

13:4

2:1
¼ 30 mm=s:

For kL ¼ 1; the nondimensional deflection shape has a maximum value equal to 0.7 (see Fig. 4) and the maximum

r.m.s. velocity is actually given by

Vall ¼ a csteel
slim

iFpeak

1

E
0:7 ¼ 0:28	 5000

114	 106

2:1	 3:5

0:7

2	 1011
¼ 76mm=s:

There is a margin factor of 2.5 between the actual fatigue threshold and the ANSI-OM3 criteria. The margin factor of

the 12mm/s is equal to 6.3.

5.3. Case of a straight pipe with a pinned condition

Let a straight pipe without any valve or mass and a pinned condition at its end vibrate on its first natural mode.
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The diameter of the tube is 1 in (2.54mm) and the structural damping coefficient is equal to 1%. a is equal to 2.8, the
natural frequency fn is associated to kL ¼ 4 (see Fig. 7) so that GðkLÞ ¼ 4 (see Fig. 8) and the maximum bending stress

is equal to the fatigue limit if

vrootðfnÞ
ffiffiffiffi
fn

p
¼
2	 0:28	

ffiffiffiffiffiffiffiffiffi
0:01

p
	 4ffiffiffi

p
p 5000

2	 1011
114

2:1	 3:5
¼ 49 mm=s:

There is a margin factor of 8 between the actual fatigue threshold and the 6mm/s/
ffiffiffi
f

p
criterion.

The application of the ANSI-OM3 criteria provides the following value of the maximum velocity:

Vall ¼ 114
1	 0:7

3:5	 1:2

13:4

2:1
¼ 120 mm=s:

The pinned condition is associated to kL ¼ 4; and the nondimensional deflection shape has a maximum value equal

to 1.5 (see Fig. 4) and the maximum r.m.s. velocity is actually given by

Vall ¼ acsteel
slim

iFpeak

1

E
0:7 ¼ 0:28	 5000

114	 106

2:1	 3:5

1:5

2	 1011
¼ 163 mm=s:

There is a margin factor of 1.35 between the actual fatigue threshold and the ANSI-OM3 criteria. The margin factor

of the 12mm/s is equal to 13.5.

The comparison made on both cases shows that the velocity spectrum criterion appears less conservative than the

12mm/s criterion and more conservative than the strict enforcement of the ANSI-OM3 standard. This should be

considered as a trend: the velocity spectrum criterion could be less conservative than the ANSI-OM3 in the case of

broadband excitations, when the small bore pipe vibrates on several modes simultaneously.

6. Validation

The velocity spectrum criterion was evaluated using root measurements of six small bore pipes for which a vibration-

induced fatigue diagnosis had already been made. These small bore pipes were located on different piping systems from

different nuclear plants, with different operating regimes, and they had layouts of all types: straight pipes with a valve as

well as curved pipes with supports.

A fair agreement was found between the former diagnosis and the application of the present paper’s criterion as

shown in the Figs. 9–12, where the bold line is the velocity threshold. As can be seen, the measured velocity spectrum

crosses the threshold for all the unsafe small bore pipes.

In Fig. 11, three velocity spectra from two different plants at three different times are plotted. Though the velocity

spectra are not identical, the diagnosis is the same in the three cases. In Fig. 12, two velocity spectra measured in two

different operating conditions are plotted. One of the operating conditions was safe, the other unsafe.

As mentioned before, the criterion does not hold for narrow excitations such as the one associated with a blade

passing frequency. Hence, the narrow peaks crossing the criterion threshold in Figs. 10 and 11 should be disregarded,

because a fair design of the small bore pipes should avoid coincidence between the natural frequencies of the pipe and

the harmonics of the rotational speed of the pump.
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Fig. 9. Root velocity measurement of small bore pipe x1.
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It should be noted that a comparison with the 12mm/s and ANSI-OM3 criteria could not be made in

Figs. 9–12, because these latter criteria deal with the velocity at the maximum deflection, and not at the base of the

small bore pipe.
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Fig. 12. Root velocity measurement of small bore pipe x4 on two different plants.
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7. Conclusions

A root velocity criterion has been proposed for the evaluation of the risk of vibration-induced fatigue of small bore

pipes in industrial piping systems. It has the following advantages: the location of the measurement is well-defined, and

information about a possible coincidence with a main pipe resonance is provided.

The criterion appears less conservative than the 12mm/s rule of thumb and generally more conservative than the

ANSI-OM3 criterion. It is validated by comparison with former analysis of industrial issues.
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Appendix A. Approximate mode shape of a small bore pipe

A.1. General expression of a deflection shape

Let a straight pipe of length L be described by the theory of Euler–Bernoulli beams, as described in Roark (1965). For

a given pulsation o; the deflection shape spectrum is a combination of harmonic and exponential terms

yðxÞ ¼ A cosðkxÞ þ B sinðkxÞ þ C expð�kxÞ þ D expðkxÞ;

k being related to the pulsation o by the dispersion equation

EIk4 ¼ lo;

l stands for the mass per unit length of the pipe, equal to

prsteelðR
2
out � R2

inÞ þ p rwaterR
2
in:

The angle, bending moment and shear force spectra can be deduced from the deflection shape spectrum by

yðxÞ=k ¼ @y=@ðkxÞ; MðxÞ=EIk ¼ @y=@ðkxÞ; �F ðxÞ=EIk ¼ @y=@ðkxÞ:

A.2. Mode shape approximation

In this section, an expression of the mode shape of the small bore pipe is derived assuming that the term expðkxÞ is
negligible, which is justified later. A straightforward calculation shows that the mode shape of a straight pipe clamped

on its left side and without any expðkxÞ term depends on only one amplitude coefficient C:

yðxÞ ¼ C½expð�kxÞ � cosðkxÞ þ sinðkxÞ�:

The coefficient C can be expressed as a function of the bending stress using the expression of the bending moment and

the relation s0 ¼ M0 Rout=I :

k2yðxÞ ¼
s0

2RoutE
½expð�kxÞ � cosðkxÞ þ sinðkxÞ�:

The k2 term suggests to use the dispersion relation and to replace the deflection spectrum y by the velocity

spectrum v:

vðxÞ ¼

ffiffiffiffiffiffi
EI

l

r
s0

2RoutE
½expð�kxÞ � cosðkxÞ þ sinðkxÞ�:

This expression can be rearranged in nondimensional form

vðxÞ ¼ a
s0
E

½expð�kxÞ � cosðkxÞ þ sinðkxÞ�;

where a is equal to a ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsteelI=ðlR2

outÞ
p

: For steel tubes complying with the ASME B.3610 M-1996 standard, the term

a can be computed as a function of the outer diameter. As can be seen in Fig. 13, a varies from 0.2 to 0.3 in a wide range

of diameters.

Note: the dispersion relation can be rewritten as k2 ¼ o=2acsteelRout
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A.3. Justification of the removal of the exp(kx) term

The goal of the study is to derive a unique relation between the amplitude of the mode shape and the stress of the

straight part of the pipe. Strictly speaking, the mode shape of an Euler beam exhibits four terms: a sine, a cosine and the

exponential terms expðkxÞ and expð�kxÞ: Assuming a clamp condition on the left side of the beam, two relations exist

between the amplitudes of the four terms. An extra relation is then required to reduce the number of independent terms.

To fulfill this requirement, it is proposed to suppress the expðkxÞ term.
The underlying idea is that if the term expðkxÞ had a noticeable influence on the left side of the straight pipe, it would

dominate the deflection, the angle, the moment and the shear force on the right side. As a mode shape of the type

yBexpðkxÞ does not seem physically acceptable, the term expðkxÞ should be negligible in most practical case.

As a numerical illustration, the cantilever beam of Fig. 15 can be considered. Blevins (1984) provides the following

mode shape:

yðxÞ ¼ coshðkxÞ � cosðkxÞ � 0:7341½sinhðkxÞ � sinðkxÞ�;

which can be rewritten as

yðxÞ ¼ 0:1330 expðkxÞ � cosðkxÞ þ 0:8670 expðkxÞ � 0:7341 sin ðkxÞ:

The amplitude of the exp(kx) term is six times smaller than the other ones.

As shown in Figs. 14–16, the approximate mode shape is compared with several mode shapes given by Blevins (1984).

A fair agreement is obtained in all cases, so that the removal of the exponential term is justified.
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